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This paper is devoted to further exploration of the PSL technique developed earlier in
its companion paper. To start with, it is shown that the method is not only appicable for
obtaining one-periodic orbits, but can be made use of for obtaining every conceivable orbit,
including subharmonic or period-doubled orbits, quasi-periodic orbits and even chaotic
orbits. This is numerically illustrated by constructing various such orbits of Ueda’s,
Duffing-Holmes’ and Van der Pol’s oscillators. Next, the separatrix, that separates the
basins of attraction of the stable limit cycles of Duffing-Holmes’ oscillator, is constructed
using the PSL procedure. A possibility of predicting the chaotic diffusion of trajectories
based on a heuristic argument of a near-tangency of stable and unstable limit cycles of
Duffing-Holmes’ oscillator is also discussed. Finally, the PSL scheme is made use of to
compute various characteristic quantities such as Fourier spectra, Liapunov characteristic
exponents and probability density functions. Many new results are presented to establish
the versatility of the PSL method.
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1. INTRODUCTION

In the companion paper [1], a novel piecewise linearization technique for non-linear
oscillators was introduced. It was shown that the technique may be used for the dual
purpose of numerically integrating the non-linear ODE and extracting a rich spectrum of
information about the local flow structure near any point in the phase space, which need
not be a hyperbolic fixed point. However, the scheme was numerically verified only against
the free vibration response and a few forced vibration one-periodic responses of a class
of non-linear oscillators. It is well known that many of the non-linear oscillators under
harmonic excitations may give rise to a wide variety of response characteristics, such as
subharmonic periodicity, quasi-periodicity and even chaos. Even though the existing
numerical techniques such as the Runge-Kutta method have been extensively used in the
literature to obtain time histories or phase space representations of all such orbits, the
selection of a proper time step, Dt, for convergence to the exact solution remains an
unresolved issue [2]. Depending upon the time-step, fictitious incidences such as occurrence
of a computational chaos [3] or shadowing of a chaotic orbit [4, 5] may take place. Several
efforts to study the Poincaré section or the solution trajectories using the Taylor series
expansions have been made [6, 7]. However, these methods require extensive computations
and are rather unwieldy even with the use of such computer-algebra softwares as
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MACSYMA, MATHEMATICA, MAPLE or REDUCE. Another problem that has
received attention in the literature is prediction of the behaviour of the forced separatrix
in double well potential oscillators, such as the Duffing-Holmes oscillator [8]. For the
Duffing-Holmes oscillator, the forced separatrix may be considered to be the boundary
that separates the basins of attraction of the two stable limit cycles. The forced separatrix
may be considered to be the stable manifold of the saddle type (unstable) periodic orbit
surrounding the origin. Moreover, an unstable manifold of this periodic orbit also exists.
It is the transversal homoclinic intersection of these stable and unstable manifolds that
leads to a complicated dynamical behaviour, such as the Smale horseshoe. An accurate
determination of these manifolds is however not possible by conventional schemes of
numerical integration.

With this in view, the present paper is so organized as to partially answer some of these
questions using the PSL method. In particular, an attempt is made to simulate the
subharmonic, quasi-periodic and chaotic response of several second order non-linear
systems, namely Duffing-Holmes’, Ueda’s and Van der Pol’s oscillators. This is followed
by an exploration of the possibility of constructing the stable and unstable manifolds of
the unstable periodic orbit of the Duffing-Holmes oscillator. It is known that the
destruction of the double well potential structure in the phase plane precedes a chaotic
diffusion of trajectories for this oscillator. An attempt is made to predict such a diffusion
in the parameter space by computing the near-tangency of the stable and unstable limit
cycles, obtained via the linearization procedure. Finally, it is shown that several
characteristic quantities, such as Liapunov characteristic exponents, Fourier spectra and
probability density functions, can also be computed accurately by suitably exploiting the
concept of phase space linearization.

2. COMPLICATED RESPONSES

It was shown in the companion paper [1] that using the concept of equivalent
linearization over sufficiently small segments of orbits in the relevant phase space, it is
possible to reduce a non-linear oscillator of the form

ẍ+ cẋ+ kx+ j(x, ẋ)=F cos (lt), x$R1, (1)

to the equivalent linear form

ẍ+ h(xi , ẋi )ẋ+ b(xi , ẋi )x=F cos (lt). (2)

Here it may be recalled that the above ODE which is conditionally linear given the
dependent variables {xi , ẋi} at the time instant ti , is valid only over a small segement
[{xi , ẋi}, {xi+1, ẋi+1}) in the phase plane. Now it would be interesting to take a closer look
at the linear equation (2). From the complementary function associated with this equation,
the following pair of eigenvalues can readily be extracted

il1,2 =−0·5h(xi , ẋi )2 0·5zs , (3)

where

s= h2(xi , ẋi )−4b(xi , ẋi ). (4)

If il1,2 are complex conjugates with negative real parts, then the corresponding local
solution would be stable. Moreover, for complex conjugate eigenvalues with negative real
parts, the local solutions are asymptotically periodic. On the other hand, if il1,2 are both
real with at least one of them being positive, or complex conjugates with positive real parts,
then the corresponding orbits are saddle type of non-periodic orbits. It may be observed
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that the values of the real parts of the eigenvalues il1,2 depend crucially on the dependent
variables {xi , ẋi} at the start of each interval [ti , ti+1). If the time axis is so partially ordered
as to consist of a countable infinity of real intervals [ti , ti+1), i=0, 1, 2, . . . , then it is
possible to obtain a countable infinity of periodic and non-periodic orbits (all saddle type)
via the present linearization procedure as the time marching is continued. At this stage,
it may be recalled that a chaotic orbit may be visualized as being made up of a countable
infinity of unstable periodic orbits and an uncountable infinity of unstable non-periodic
orbits. Such an observation hints at the possibility of simulating a chaotic trajectory to
high precision through the PSL technique. However, since the time axis can only be
ordered into a countable number of subdivisions, a countable set of non-periodic orbits
can be generated in practice.

Now it would be interesting to verify the performance of the linearization scheme against
numerical simulations of subharmonic, quasi-periodic and chaotic response of Ueda’s,
Duffing-Holmes’ and Van der Pol’s oscillators. While Ueda’s oscillator shows a period
doubled subharmonic route to chaos, for the Duffing-Holmes oscillator chaos ensues due
to homoclinic bifurcation followed by destruction of the separatrix structure in the phase
plane. In contrast, a complicated motion, such as quasi-periodicity or chaos, may ensue
in Van der Pol’s oscillator due to interaction between the self-excited limit cycle and the
external periodic forcing. All the numerical solutions have been obtained using both the
PSL and fourth order Runge-Kutta schemes. The time step for integration has been
uniformly fixed at Dt=0·005 unless specifically mentioned to the contrary. First, various
subharmonic orbits of Ueda’s oscillator are shown in Figure 1. In Figure 2, a chaotic orbit
of Ueda’s oscillator as computed using PSL and Runge-Kutta schemes is reported. For
the Duffing-Holmes oscillator, again, the results of a set of simulations of subharmonic
orbits are shown in Figure 3. Simulated chaotic orbits for this oscillator are shown
in Figure 4. Finally, for the Van der Pol oscillator, a quasi-periodic orbit is shown in
Figure 5. The orbit is seen to be filling up the phase plane due to irrational frequency
ratio(s) in the response process. However, present attempts to find chaotic regimes for this
oscillator have not proved fruitful. On the other hand, if a combined Van der Pol’s and
Duffing-Holmes’ type of oscillator with the following form

ẍ+2po1(4x2 −1)ẋ+4p2o2(x3 − x)=4p2o3 cos (2pt) (5)

is chosen, then chaos is a distinct possibility due to a complicated interaction between the
limit cycle and the homoclinic orbit. One such orbit, computed by using both linearization
and Runge-Kutta schemes, is reported in Figure 6. From the shape of the chaotic orbit
as projected onto the phase plane it may be inferred that for this oscillator chaos occurs
in the form of a noisy limit cycle with intermittent chaotic bursts, i.e., on the line of the
Pomeau-Manneville scenario.

3. DUFFING-HOLMES OSCILLATOR: FORCED SEPARATRIX

The forced separatrix corresponds to the forced stable manifold. That such a forced
stable manifold exists for sufficiently small values of the perturbation parameters, o1 and
o3, follows from the invariant manifold theory [9]. As in the derivation of the unstable limit
cycle, described in the companion paper [1], here again it would be convenient to consider
the oscillator after introducing a phase, f, in the forcing term. Thus, the equation is

ẍ+2po1ẋ+4p2o2(x3 − x)=4p2o3 cos 2p(t+f). (6)
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Figure 1. Subharmonic orbits of Ueda’s oscillator: (a) two-periodic orbit, e1 =0·25, e2 =1·0, e3 =2·0; (b)
four-periodic orbit, e1 =0·25, e2 =1·0, e3 =7·0, qqqq, Runge-Kutta; ——, linearization.



–30.00

–10.00

10.00

30.00

50.00

–50.00
–2.00 0.00 2.00 4.00–4.00

x•

(a)

–30.00

–10.00

10.00

30.00

50.00

–50.00
–2.00 0.00 2.00 4.00–4.00

x

(b)

   881

Figure 2. A chaotic orbit of Ueda’s oscillator, o1 =0·25, o2 =1·0, o3 =11·0: (a) linearization; (b) Runge-Kutta.

At the outset, it is required to find out a point {uxi , uẋi , ufi} on the unstable limit cycle
as explained in the previous paper. Since the eigenvalues il1,2 are real near this point, the
solution for the forced separatrix passing through {uxi , uẋi} may be written down as

xj+1 = xj +Dj =K2j exp{jl2(xj , Dj )hj}+ p(tj+1, fj ), (7)
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Figure 3. Subharmonic orbits of Duffing-Holmes’ oscillator: (a) two-periodic orbit, o1 =0·25, o2 =0·5,
o3 =0·3; ——, Runge-Kutta; qqqq, linearization. (b) Three-periodic orbit, o1=0·25, o2 =0·5, o3 =0·4; ——,
Linearization: qqqq, Runge-Kutta.
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Figure 4(a)–(b)
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Figure 4(c)–(d)

Figure 4. Chaotic orbits of Duffing-Holmes’ oscillator: (a) via linearization, o1 =0·25, o2 =0·5, o3 =0·5; (b)
via Runge-Kutta, o1 =0·25, o2 =0·5, o3 =0·5; (c) via linearization, o1 =0·25, o2 =0·3, o3 =0·45; (d) via
Runge-Kutta, o1 =0·25, o2 =0·3, o3 =0·45.
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Figure 5. A quasi-periodic orbit of Van der Pol’s oscillator, o1 =0·25, o2 =4·0, o3 =2·0: (a) via linearization;
(b) via Runge-Kutta.
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Figure 6. A chaotic orbit of combined Duffing-Holmes’ and Van der Pol’s oscillator, o1 =0·25, o2 =4·0,
o3 =3·0: (a) via linearization; (b) via Rung-Kutta.
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where

xj = uxi ,

ẋj = uẋi ,

p(tj+1, fj )= (1/D)o3[o2{b(xj , Dj )−1}−1] cos 2p(tj+1 +fi )

+ (1/D)o1o3 sin 2p(tj+1 +fi ),

K20 = uxi − p(0, ufi ),

b(xj , Dj )=
(x4

j +2x3
j Dj +2x2

j D
2
j + xjD

3
j +D4

j /5)
(x2

j + xjDj +D2
j /3)

,

D= {o2(b−1)−1}2 + o2
1,

hj = tj+1 − tj . (8)

Thus the value of K20 is seen to be dependent on the choice of the point on the unstable
limit cycle, from which the separatrix emerges backwards in time. Since the limit cycle itself
consists of an uncountable infinity of points, an uncountable infinity of forced separatrices
can (theoretically) be constructed using the PSL method. Equation (7) may be used to
move backwards in time till jl2 becomes complex. In this case, the last obtained values of
xj and ẋj should be used to move further backwards in time. It may be mentioned here
that the methodology for obtaining the unstable manifold of the perturbed homoclinic
orbit also follows the same pattern as for the perturbed stable manifold. The only
difference in this case is that the complementary function in equation (7) should be
constructed with the positive eigenvalue, jl1, instead of the negative eigenvalue, jl2.

As a numerical illustration for the above procedure, the stable and unstable manifolds,
denoted respectively by eWs and eWu , are plotted in Figure 7 for different values of e3. It
is clearly demonstrated that for some specific value of e3 at a Poincaré section based at
f=fi , a quadratic tangency between the stable and unstable manifolds occurs, as
predicted by the Melnikov function. The forced separatrix, which constitutes the stable
manifold normally hyperbolic to the unstable limit cycle and separates the basins of
attraction of the two stable limit cycles, is plotted in Figure 8. Here the procedure for
constructing the forced separatrix follows a similar pattern as for constructing the stable
manifold. First, a set of points ({uxi , uẋi , fi =i=1, 2, . . . ) on the unstable limit cycle is
found. Then any point {uxj , uẋj , fj} on this orbit is chosen. This point serves as the limit
point of the corresponding separatrix as t:a based on a Poincaré section Sfi at fi . Next,
both the branches of the stable manifold originating from this point may be constructed
by considering the local eigenvalue structure of the equivalent linear flow as obtained via
the PSL.

4. ONSET OF CHAOTIC DIFFUSION

A necessary condition for the onset of chaos in the Duffing-Holmes oscillator may be
obtained using the Melnikov criterion. However, this is not a sufficient condition since the
Melnikov boundary only predicts the minimum possible parameter combinations below
which chaos is not possible. On the other hand, it is possible to use the analytical
expressions for the stable and unstable one-periodic orbits via PSL to heuristically argue
out a sufficient condition for the onset of steady-state chaos. It is known that these orbits
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Figure 7. Stable and unstable manifolds of the unstable periodic orbit of the forced Duffing-Holmes oscillator:
(a) o1 =0·25, o2 =0·5, o3 =0·1; (b) o1 =0·25, o2 =0·5, o3 =0·25.

are invariant solution manifolds. The stable and unstable one-periodic orbits cannot,
therefore, intersect each other, since such an intersection would violate the uniqueness
condition of the solution trajectories. It may also be argued that given a set of values for
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the damping and stiffness parameters, namely o1 and o2, it is possible for all the three
one-periodic orbits to co-exist for sufficiently low values of the forcing amplitude
parameter, o3. Now, as o3 is slowly increased, the size of each of these orbits also increases.
Thus, with increase in o3, the unstable and stable orbits come closer and closer. Let d be
the minimum distance of separation of any two points, one on the unstable limit cycle and
the other on any one of the stable limit cycles. Consider, for example, the stable limit cycle
with positive x, if {sxmin , 0} is the co-ordinate of the point of intersection of this orbit with
the x-axis towards the origin, then d would be given by

d= sxmin − uxmax , with 0Q uxmax Q sxmin Q 1. (9)

A sufficient condition for a quadratic tangency of the stable and unstable limit cycles is
that d=0. However, this is not a necessary condition since phase information is lost in
the phase plane representation. Let the parameter o3 be denoted as co3 when d=0. It is
evident that at this stage, the double-well potential structure of the Duffing-Holmes
oscillator may break down due to the non-existence of the unstable limit cycle and thus
a chaotic diffusion may set in. The idea as presented above is not new and has already
been hinted at by Dowell and Pezeshki [10]. However, further efforts at obtaining the
corresponding boundary accurately in the parameter space have been frustrated by the lack
of proper methodologies to produce the stable and unstable limit cycles analytically. It may
also be mentioned that even before a quadratic tangency of the stable and unstable limit
cycles can occur, chaos is likely to set in following a particular type of instability of the
small one-periodic orbits [11]. However, it is of interest to investigate the ranges of

Figure 8. Forced separatrix of Duffing-Holmes’ oscillator, o1 =0·25, o2 =0·5, o3 =0·05.
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parameters for which d:0, as this gives an upper bound in the parameter plane below
which a quadratic tangency of the stable and unstable limit cycles is not possible.

An analytical treatment of the unstable limit cycle via PSL was performed in the
companion paper [1]. Now a similar treatment is possible for the stable limit cycles. To
this end, the following transformation would be useful

x= y+1. (10)

In this new variable y, the Duffing-Holmes equation becomes

ÿ+2po1ẏ+4p2o2(y2 +3y+2)y=4p2o3 cos 2p(t+f). (11)

When o3 =0, {0, 0} and {−2, 0} are stable sinks and {−1, 0} is an unstable saddle for the
above equation. Here the orbits of the stable limit cycles would be around {0, 0} and
{−2, 0} in the phase plane. Now, the equivalent linear form for this equation may be
written down as

ÿ+2po1ẏ+4p2o2k(yi , Di )y=4p2o3 cos 2p(t+f). (12)

The coefficient k may be found by an error minimization over the segment [yi , yi+1).
Moreover, it may be readily verified that

lim
Di:0

k(yi , Di )= y2
i +3yi +2. (13)

It may also be mentioned that the function k(yi , 0) is positive for all yi q−1. Thus, if
attention is focused on finding the stable limit cycle lying on the right hand side of the
unstable limit cycle, then the real parts of the eigenvalues of the complementary part of
equation (11) on and around the stable limit cycle would always be negative. Hence,
following the same arguments as presented in the companion paper [1], a transcendental
equation for the x-co-ordinate of any point {syi , sẏi} lying on the right-hand-side stable
limit cycle may be found to be

syi =
1
D

[o3{o2(sy2
i +3syi +2)−1} cos (2pfi )+ o1o3 sin (2pfi )]. (14)

The above equation needs to be solved for various fi $ [0, 1) to obtain the complete limit
cycle. The co-ordinate sẏi may be found out by simply differentiating the above equation
with respect to f. This gives

sẏi =−
2p

D
[o3{o2(sy2

i +3syi +2)−1} sin (2pfi )− o1o3 cos (2pfi )]. (15)

The stable one-periodic orbits of the Duffing-Holmes oscillator have been constructed
analytically following the procedure outlined above for various parameter combinations.
These orbits, along with the numerically simulated ones, are shown in Figure 9. It is seen
that the comparison is favourable. Next, to study the structure of near-tangency of the
stable and unstable limit cycles, the curve of co3 versus o2 is plotted in Figure 10. In this
figure, the hatched region, which has been delineated by computing the highest Liapunov
exponent followed by a positivity check, is chaotic [12]. It is thus seen that even below
the boundary for near-tangency of the stable and unstable one-periodic orbits, chaos is
possible in the Duffing-Holmes oscillator.
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Figure 9. Small one-periodic orbits of forced Duffing-Holmes’ oscillator: (a) o1 =0·25, o2 =0·3, o3 =0·025; (b)
o1 =0·25, o2 =0·2, o3 =0·05; (c) o1 =0·25, o2 =0·1, o3 =0·1. · · · · , Analytical; ——, simulation.
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5. FOURIER SPECTRA

The fact that the local flow structure for non-linear oscillators is explicitly known in
terms of a continuous function in the PSL method may be exploited to compute the
Fourier spectra. Let X(t) denote a trajectory of a non-linear ODE of the form of equation
(1). To obtain the Fourier spectrum of X(t), the following Fourier inversion

S(v)=S1(v)+S2(v), (16)

where

S1(v)= lim
T:a g

T

0

X(t) cos (vt) dt,

S2(v)= lim
T:a g

T

0

X(t) sin (vt) dt, (17)

is performed. Once the above quantities are known, it suffices to obtain the Fourier
amplitude,

A(v)=zS2
1(v)+S2

2(v). (18)

Now, according to the present method of linearization, the complete solution trajectory,
X(t), is given by

X(t)= k
[i

{ix(t) = t$ [ti , ti+1)}, (19)

Figure 10. A partially structured o3–o2 plane, o1 =0·25.
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where ix(t) is the solution of the linear ODE valid over [ti , ti+1). Thus, the integrations
required to be performed in equation (17) can be equivalently written as

S1(v)= lim
N:a

s
N

i=0

1
hi g

ti+1

ti

x(t) cos (vt) dt,

S2(v)= lim
N:a

s
N

i=0

1
hi g

ti+1

ti

x(t) sin (vt) dt. (20)

since the solution for ix(t) is known in closed form and is in terms of only exponential
and trigonometric functions, the above integrals can also be obtained in closed form. Thus,
taking for instance the Duffing-Holmes oscillator, if il1,2 are real, then

g
ti+1

ti

ix(t) cos (vt) dt= {K1i /(il2
1 +v2)}[exp(il1hi ){il1 cos (vti+1)

+v sin (vti+1)}− {il1 cos (vti )+v sin (vti )}]

{K2i /(il2
2 +v2)}[exp(il2hi{il2 cos (vti+1)+v sin (vti+1)}

− {il2 cos (vti )+v sin (vti )}]

+ {G1/2(2p+v)}[sin (2p+v)ti+1

− sin (2p+v)ti ]+ {G1/2(2p−v)}[sin (2p−v)ti+1

− sin (2p−v)ti ]

− {G2/2(2p+v)}[cos (2p+v)ti+1 −cos (2p+v)ti ]

− {G2/2(2p−v)}[cos (2p−v)ti+1 −cos (2p−v)ti ], (21)

and,

g
ti+1

ti

ix(t) sin (vt) dt= {K1i /(il2
1 +v2)}[exp(il1hi ){il1 sin (vti+1)

−v cos (vti+1)}− {il1 sin (vti )+v cos (vti )}]

− {G1/2(2p+v)}[cos (2p+v)ti+1 −cos (2p+v)ti ]

+ {G1/2(v−2p)}[cos (v−2p)ti+1 −cos (v−2p)ti ]

+ {G2/2(v−2p)}[sin (v−2p)ti+1 − sin (v−2p)ti ]

− {G2/2(2p+v)}[sin (2p+v)ti+1 − sin (2p+v)ti ], (22)

where

G1 =
o3{o2b(xi )−1}

[{o2b(xi )−1}2 + o2
1]

(23)

and,

G2 =
o1o3

[{o2b(xi )−1}2 + o2
1]
. (24)
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Similar calculations can be performed for the case where il1,2 are complex conjugates. An
advantage of the presently adopted technique of Fourier inversion is that the trajectory
X(t) in between any pair of points {xi , ẋi} and {xi+1, ẋi+1} is locally simulated by a Ca

curve. This is in sharp contrast with the usual procedure of generating a finite number of
data points by numerical integration schemes and then evaluating the integrals in (17) by
using approximate schemes such as the Gaussian quadrature or the five point rule.

In Figure 11, the Fourier spectra of the Duffing-Holmes oscillator for a periodic and
a chaotic case is shown using the PSL scheme as outlined above. As expected, for the
one-periodic case, there is only one sharp peak at the frequency of the external forcing.
However, for the chaotic case, a broad-banded spectrum is realized. A noticeable feature
of chaos here is the persistence of a sharp peak at the frequency of the external forcing.
This means that the chaotic trajectory spends a considerable time near the one-periodic
orbit.

6. LIAPUNOV CHARACTERISTIC EXPONENTS (LCEs)

Two different methods are presented here to compute the LCEs of a non-linear oscillator
using the PSL approach. While the first method extracts the exponents by treating the local
solution over a small segment of the trajectory as a map, the second method makes use
of the local eigenvalue structure of an error-minimized variational equation to extract all
the exponents.

6.1.  1
In the companion paper [1], it was shown that it is possible to reduce the flow of a second

order non-linear ODE to a 2-D non-linear map using the concept of piecewise
linearization. Thus, considering the oscillator in equation (1), the following non-linear map
may be arrived at:

xi+1 =F1i (xi , ẋi , Di , ti+1, hi ),

ẋi+1 =F2i (xi , ẋi , Di , ti+1, hi ). (25)

The detailed derivation for the functions F1i and F2i was performed in the companion paper
[1] and hence is not reproduced here. Now, the explicit form of the above non-linear map
may be readily exploited to generate all the LCEs of the original ODE (1). If the time-step,
hi , is kept constant at hi = h, then the map (25) may be construed as 2-D Poincaré section
over an interval h of the ODE (1), which in turn is equivalent to a 3-D autonomous ODE.
Thus, in principle, the two LCEs of the map should be the same as the two non-zero LCEs
of the original non-linear equation. Now, adopting the usual approach for computing the
LCEs of a map, let Gi (n), i=1, 2, . . . , be the eigenvalues of the matrix

Bn =[Mn · Mn−1 · · · M1]1/n, (26)

where

Mj =G
G

G

K

k

1F1j

1jxj

1F2j

1jxj

1F1j

1jẋj

1F2j

1jẋj

G
G

G

L

l
. (27)

Then the non-zero LCEs of the non-linear ODE are given by

si = lim
n:a

ln =Gi (n)=. (28)



0.15

0.05

0.10

0.00
4.000.00 8.00 12.00

(a)

0.30

0.05

0.10

0.15

0.20

0.25

0.00
4.000.00 8.00 12.00

ω

ω
S

( 
  

)

ω

(b)

   895

Figure 11. Fourier spectra for Duffing-Holmes’ oscillator: (a) one-periodic case, o1 =0·25, o2 =0·5, o3 =0·1;
(b) chaotic case, o1 =0·25, o2 =0·3, o3 =0·45.
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The third LCE of the non-linear ODE (1) is identically zero. However, it may be noted
that due to the complicated nature of the functions F1j and F2j , it may sometimes be
laborious to manually compute the partial derivatives to construct the matrix Mj . For such
cases, it would be convenient to compute the derivatives symbolically using computer
programmes such as MATLAB.

To compare the LCEs obtained using the above scheme with those obtained using
existing standard techniques, an algorithm introduced by Iyengar [12] to compute the
maximum LCE is made use of. The first variational equation of the Duffing-Holmes
oscillator is given by

v̈+2po1v̇−4p2o2(1−3x2)v=0. (29)

Now, introducing the polar transformation

v=exp(−po1t)r cos f,

v̇=exp(−po1t)r(sin f− po1 cos f), (30)

one gets

ṙ=0·5(1+4p2o2 + p2o2
1 −12p2o2x2)r sin (2f),

f� =−1+0·5(1+4p2o2 + p2o2
1 −12p2o2x2){1+cos (2f)}. (31)

The maximum LCE is now given by

smax = lim
T:a $−po1 +

1
2T g

T

0

(1+ p2o2
1 +4p2o2 −12p2o2x2) sin (2f) dt%. (32)

The maximum LCE, smax , has been calculated using the above two approaches for both
periodic and chaotic cases. These are reported in Figures 12 and 13. The comparison of
the two algorithms seems to be quite favourable, except for one of the chaotic cases
reported in Figure 13(b). Here, in contrast with a good convergence achieved using the
linearization method, Iyengar’s result is yet to converge even after integrating over 1000
cycles. In all these cases, the time-step, hi , has been uniformly fixed at 0·01, Moreover, the
present method is capable of extracting all the LCEs together and is computationally
faster.

6.2.  2
A difficulty in implementing the above technique is the differentiation of the vector

function Fi whose form is rather complicated. A much more elegant way to extract the
LCEs is to study the eigenvalue structure of the variational equation, which, for the
Duffing-Holmes oscillator, is given by equation (29). Now, let a sufficiently small interval
I=[{xi , ẋi}, {xi+1, ẋi+1}) on any trajectory X(t)= {x(t), ẋ(t) = t$R} be considered. The
orientations of the two eigen-directions in equation (29) changes continuously depending
on x. It is however intended here to replace these changing orientations over I by an
averaged orientation. This may be achieved by replacing the time-varying coefficient of
v by a constant, which in turn is obtained by minimizing the mean square error over the
segment I. This leads to

v̈+2po1v̇+4p2o2(3x2
i +3xiDi +D2

i −1)v=0, (33)
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where Di = xi+1 − xi . The two eigenvalues of the above equation are

ig1 =−po1 + p{o2
1 +4o2(1−3x2

i +3xiDi +D2
i )}1/2,

ig2 =−po1 − p{o2
1 +4o2(1−3x2

i +3xiDi +D2
i )}1/2. (34)

Depending on xi and Di , ig1,2 may be real or complex conjugates. In either case, the two
local Liapunov exponents (LLEs) are given by

ismax =Re {ig1},
ismin =Re {ig2}. (35)

It may be mentioned that the imaginary parts of ig1,2 do not contribute to the LLEs, since
they give rise to fluctuating components whose time averages are strictly zero. The two
LCEs are now given by

smax = lim
N:a

1
N

s
N

i=1

ismax ,

smin = lim
N:a

1
N

s
N

i=1

ismin . (36)

It is obvious that the convergence of the LCEs calculated as above would be pretty fast
as the fluctuating components are identified and removed at each step. It is interesting to

Figure 12. Highest LCE for Duffing-Holmes’ oscillator via linearization (method 1) and Iyengar’s schemes:
one-periodic case, o1 =0·25, o2 =0·5, o3 =0·1. ——, Iyengar’s scheme; ×××, linearization.
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Figure 13. Highest LCE for Duffing-Holmes’ oscillator via linearization (method 1) and Iyengar’s schemes:
chaotic cases. (a) o1 =0·25, o2 =0·5, o3 =0·5; (b) o1 =0·25, o2 =0·3, o3 =0·45. ——, Iyengar’s scheme; ×××,
linearization.
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observe that as long as ig1,2 are complex conjugates (i.e., with non-zero imaginary parts),
the real part remains constant at −po1. Thus, the segment I can be made large so long
as ig1,2 are complex conjugates.

Figures 14(a)–(b)



1.00

–3.00

–2.00

–1.00

0.00

–4.00
200.0 400.00 600.000.0 800.00 1000.00

t

L
C

E

(c)

3.00

–1.00

0.00

1.00

2.00

–2.00
850.00 900.00800.00 950.00 1000.00

t

H
ig

h
er

 L
L

E

(d)

. .   . 900

Figures 14(c)–(d)

In Figure 14, the evolutions of the two non-zero LCEs obtained using the
error-minimized variational equation are shown for a few periodic and chaotic cases of
the Duffing-Holmes oscillator. The corresponding evolutions of the highest LLEs are
alsoreported in the same figure. From the arguments presented above, it is evident that
the present technique is computationally very efficient.
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Figures 14(e)–(f)

Figure 14. (a), (b) Evolutions of the LCEs and the higher LLE of Duffing-Holmes’ oscillator (method 2):
o1 =0·25, o2 =0·25, o3 =0·5. (c), (d) o1 =0·25, o2 =0·25, o3 =0·6; (e), (f) o1 =0·25, o2 =0·25, o3 =0·7. ——,
Higher LCE; – – –, lower LCE.
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6.3.   

It is well known that a set of chaotic trajectories starting infinitesimally close to each
other separate out to finally evolve on a strange attractor which has a finite measure on
a Poincaré section. In other words, if the probability density function (pdf) of the initially
specified dependent variables is close to, but not exactly, a Dirac delta function, then as
the trajectories evolve with time, the pdf flattens out to cover the strange attractor. The
objective of this section is to make use of the map (25) for obtaining the evolution of this
pdf numerically. A path integral formalism is adopted here for this purpose. A brief outline
of the strategy is as follows. Let {xi , ẋi} be a point on the solution trajectory of equation
(1) at time t= ti . Given the point xi = {xi , ẋi}, it is straightforward to obtain the point
{xi+1, ẋi+1} at time t= ti+1 by solving for the map (25). In other words

p(xi+1 = xi )= d{xi+1 −Fi (xi )}, (37)

where the vector function Fi is given by

Fi = {F1i F2i}, (38)

and d stands for the Dirac delta function. Now it is noted that the following relation is
an identity

p(xi+1)=gxi
g p(xi+1 = xi )p(xi ) dxi . (39)

Substitution of equation (37) in the above equation leads to

p(xi+1)= p{F−1
i (xi+1)}. (40)

However, in the above algorithm, Fi is a point-to-point mapping. Therefore, in a computer
simulation, a point once visited is almost surely never visited again due to the limitations
of floating point representation of numbers. To overcome this difficulty, it would be
convenient to divide the continuum of the phase space into a countable number of
rectangular cells. Each cell is assumed to be represented by its centre point and this
representative point is assumed to be visited by an ensemble of trajectories as many times
as the corresponding cell is visited. Thus, depending on the cell size, it is possible to obtain
a unique cell map from the point-to-point map (25). Let the cell map be given by

si+1 =Si (si ), (41)

where si , i=1, 2, . . . are a set of regular cells [13], such that ji si is a cover for the attractor
in a Poincaré section. The set {ji si}c is replaced by a single sink cell, where the superscript
‘c’ stands for complementation. Since the inverse F−1

i exists for sufficiently small [ti , ti+1)
and each cell si is denoted by a unique point, it follows that the inverse S−1

i also exists.
Therefore, equations (38) through (41) may be easily reformulated with reference to the
cell state space. Thus,

p(si+1 = si )= d{si=1 −Si (si )} (42)

and

p(si+1)= p{S−1
i (si+1)}. (43)

To implement the above algorithm, an ensemble of initial trajectories, each starting from
the centre of a cell, is chosen. In order to find out all the attractors that may be present
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in the phase space, it is appropriate to start with non-zero initial probabilities for each
of the cells. A convenient choice is a uniform pdf, i.e., p(si )=1/N, where N stands for
the number of regular cells. The evolution of the pdf may now be numerically computed
using equations (42) and (43). It may be noted that at any time, t= tj , a cell sj can either
have a zero probability or a probability in terms of multiples of 1/N. Therefore it is
essential to choose a sufficiently high N in order to obtain a smooth pdf.

Before applying the above algorithm to non-linear ODEs, it would be useful to verify
the approach for the logistic map, for which quite a number of results are already available
in the literature. This map is given by

xi+1 = mxi (1− xi ), (44)

where, 0E xi E 1 for all i. The closed interval [0, 1] is now divided into 5000 cells of the
same size. Similarly, a set of 5000 initial conditions, each starting from the middle of the
corresponding cell, has been chosen. In Figure 15, the resulting pdf at the 1000-th iteration
of equation (44) have been shown for three different chaotic cases corresponding to
m=3·8, 3·825 and 4·0. A visual comparison of these results with those obtained by Shaw
[14] using an iterative scheme shows very good agreement. It may however be mentioned
that for the logistic map, the trajectories are ergodic and therefore a stationary pdf exists,
which can be computed using only a single trajectory instead of an ensemble.

Next, the algorithm is applied to the Duffing-Holmes oscillator. When the oscillator is
in the chaotic regime, the solution evolves within the strange attractor. First, the strange
attractor is shown in Figure 16(a). The corresponding pdf at t=100 s is shown in Figure
16(b). Here an ensemble of 2500 trajectories have been used and consequently the phase
plane has been divided into 50×50 rectangular cells of the same size. From this figure,
the non-stationary nature of the PDF is evident.

7. DISCUSSION AND CONCLUSIONS

The aim of this paper has been to explore the new phase space linearization method in
order to verify the universality of the method as applied to harmonically forced non-linear
oscillators. In particular, it has been shown that the method is capable of simulating a wide
variety of orbits, such as period-doubled orbits, quasi-periodic orbits and even chaotic
orbits, which are distinctive to non-linear oscillators. It has also been demonstrated that
a rich repertoire of information may be obtained by inspecting the local eigenvalue
structure of the equivalent linear equations, each valid over small segments of the orbit
in the relevant phase space. Thus, it has been possible to develop a strategy for constructing
the stable and unstable invariant manifolds which are normally hyperbolic to the unstable
limit cycle of the Duffing-Holmes oscillator. Since the stable manifold is the same as the
separatrix, that delimits the basins of attraction of the pair of stable limit cycles. Such a
strategy serves the additional purpose of structuring the initial condition plane without the
necessity of performing an elaborate and time-consuming numerical integration.
Moreover, an inspection of eigenvalues leads to a very efficient algorithm to construct the
small one-periodic orbits, in addition to the unstable limit cycle of the Duffing-Holmes
oscillator. This in turn permits an investigation of near-tangency of the stable and unstable
one-periodic orbits, leading to an approximate boundary in the parameter space, beyond
which chaotic diffusion is a distinct possibility. Next it is shown that the concept of
piecewise linearization may be used for an accurate determination of Fourier spectra of
the response process. It has been pointed out that the PSL method may be applied to
reduce the flow of a non-linear oscillator either to a non-linear map or to an equivalent linear
flow over small segments of the relevant orbit. These aspects have been exploited to arrive
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Figure 15. PDF for the logistic map: (a) m=3·8, (b) m=3·825; (c) m=4·0.
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Figure 16. (a) Chaotic case of Duffing-Holmes’ oscillator: strange attractor on a Poincaré section, o1 =0·25,
o2 =0·3, o3 =0·45. (b) PDF of Duffing-Holmes’ oscillator for the chaotic case.
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at two different methods for calculating all the Liapunov characteristic exponents. Finally,
the method has been made use of in numerically determining the probability density
function of an ensemble of chaotic trajectories.

Here it needs to be mentioned that the arguments presented for determining the
near-tangency of stable and unstable one-periodic orbits of the Duffing-Holmes oscillator
are rather heuristic and lack sound analytical footing. Thus, a better way of performing
such an analysis would be to choose a Poincaré section and then derive a Melnikov-type
of function for the distance between the stable and unstable orbits by making use of the
new linearization scheme. However, such a rigorous analysis poses several difficulties and
it is not pursued here. The boundary for the near-tangency of the stable and unstable orbits
should therefore be interpreted as approximate.

The proposed PSL technique, as of now, lacks a sound mathematical footing. It appears
that the error minimization is not the only way to obtain the conditionally linear equations.
Thus, efforts to find out these equivalent linear equations by other means should be made.
Once various methods for constructing these equations are established and mathematically
validated, the interrelationship between these methods needs to be found out. This will
shed new light on non-linear response characteristics. Here it may be pointed out that the
PSL scheme should be readily extendible to higher dimensional non-linear oscillators,
wherein solutions of a set of non-linear algebraic equations at each step would be required
to find out the unknown increments of various dependent coordinates. Finally, it is noted
that extension of the concept of PSL to non-linear random vibration problems forms
another interesting piece of unaccomplished task. It is hoped that the work reported here
would invite the attention of researchers in these directions.

REFERENCES

1. R. N. I and D. R 1998 Journal of Sound and Vibration 211, 843–875. New approaches
for the study of non-linear oscillators.

2. P. E. K and J. L 1986 SIAM Journal of Numerical Analysis 23, 986–995. Stable
attracting sets in dynamical systems and in their one-step discretisation.

3. E. N. L 1989 Physica D 35, 299–317. Computational chaos: a prelude to computational
instability.

4. R. M. C, C. E and M. A. H. N 1991 Physics Letters A 157, 27–36. Numerical
methods can suppress chaos.

5. S. T. F and M. A. Z 1992 Physics Letters A 166, 340–346. Computer dynamics and
shadowing of chaotic orbits.

6. M. K, W. K and E. K 1990 in Continuation and Bifurcations: Numerical
Techniques and Applications (D. Roose et al., editors). Dordrecht: Kluwer Academic Publishers.
A combined numerical and analytical approach.

7. W. K, E. K and C. W 1991 International Series Num. Math. 97, 199–203.
Combined analytical-numerical analysis of nonlinear dynamical systems.

8. J. G and P. H 1983 Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer-Verlag.

9. M. W. H, C. C. P and M. S 1977 Invariant Manifolds. Springer Lecture Notes in
Mathematics, Vol. 583. Berlin: Springer-Verlag.

10. E. H. D and C. P 1988 Journal of Sound and Vibration 121, 195–200. On necessary
and sufficient conditions for chaos to occur in Duffing’s equation: an heuristic approach.

11. W. S-S and J. R 1992 Journal of Sound and Vibration 152, 57–72.
Local methods in predicting occurrence of chaos in two-well potential systems: superharmonic
frequency regions.

12. R. N. I 1993 ZAMM 73, T46–T53. Chaotic behaviour in nonlinear oscillators.
13. C. S. H 1980 Journal of Applied Mechanics 47, 931–939. A theory of cell-to-cell mapping

dynamical systems.
14. A. J. L and M. A. L 1983 Regular and Stachastic Motion. Berlin:

Springer-Verlag.


